β -Substitutions on *meso*-Tetraphenylporphyrin by Direct Electrochemical Oxidation in the Presence of Nucleophiles

L. El Kahef, M. Gross, and A. Giraudeau

Laboratoire d'Electrochimie et de Chimie Physique du Corps Solide (U.A. au CNRS nº 405), Université Louis Pasteur, 4 rue Blaise Pascal, F-67000 Strasbourg, France

The electrochemical oxidation of *meso*-tetraphenylporphyrin in chloroform–acetonitrile in the presence of various nucleophiles leads to the formation of the corresponding β -substituted salt.

Previous studies have demonstrated that porphyrin π -cation radicals react in solution with various nucleophiles to provide β -substituted porphyrins.^{1,2} In order to obtain good yields for this reaction, the chemical route generally needs the metalloporphyin ZnTPP (TPP = tetraphenylporphyrin) as starting material because of its low oxidation potential³ and the high stability of the π -cation radical ZnTPP+•.^{4,5} These characteristics facilitate obtaining the corresponding salt required for the nucleophilic β -substitutions.

The higher oxidation potential of the corresponding free base H_2TPP ,^{6.7} and the very low stability of its π -cation radical⁵ prevented carrying out such β -substitutions chemically, until now.

We described recently an alternative oxidation pathway for obtaining β -substituted porphyrins through direct electrochemical oxidation of ZnTPP in the presence of various nucleophiles.^{8,9} This electrochemical route is of particular interest considering the good yield of substitution reaction compared to the chemical route.

We now report the first evidence for β -substitution of the *meso*-tetraphenylporphyrin H₂TPP by a one-pot reaction, *viz*. by electrochemical oxidation of the free base H₂TPP in the presence of nucleophiles.

meso-Tetraphenylporphyrin H_2TPP , prepared by the method of Adler *et al.*¹⁰ and purified as described by Smith,¹¹ had spectroscopic properties consistent with the literature.

The exhaustive electrochemical oxidation of H_2TPP was performed under nitrogen in a three-electrode two-compartment cell. The working and counter electrodes were platinum wires. The reference electrode was a saturated calomel electrode (S.C.E.). The electrochemical solution contained H_2TPP (40 mg) and pyridine (4 ml) in MeCN-CHCl₃ (1:4) (250 ml) with tetraethylammonium perchlorate (TEAP 0.1 M) as supporting electrolyte.

The solvents and pyridine were commercial products (Fluka Puriss.), used without further purification. TEAP was purified by known procedures.¹²

After the working electrode had been maintained for 1 h at +1.01 V vs. S.C.E., the initial violet solution turned yellowbrown. Further evaporation under reduced pressure, washing, and extraction with $H_2O-CH_2Cl_2$ (5:1) gave a dark solid which was chromatographed on an alumina column (activity III, Merck). Elution with CHCl₃ gave a yellow clear solution (unidentified product). Further elution with CHCl3-MeOH (95:5) afforded the desired product which was recrystallised from CH₂Cl₂-n-pentane to produce dark crystals (39 mg). Thus the net yield of the substitution was 86% whereas the yield was only 70% when the metallated porphyrin (ZnTPP) was the starting material. Elemental analyses were consistent with the product being the monoperchlorate $(H_2TPP-\beta Py)^+$ ClO_4^- and its visible spectrum[†] fitted well with the known characteristics² of the β -pyridinium derivative of H₂TPP. The ¹H n.m.r. spectrum[‡] is also consistent with the structure assigned; the pyrrolic protons all appear downfield from those of the phenyl ring, thus demonstrating that the aromaticity of the porphyrin ring was not interrupted² and, therefore, that the substitution had not taken place at a *meso*-position.

We successfully carried out similar reactions with various substituted pyridines: for instance, in the presence of 2-picoline the substitution reaction generated the species (H₂TPP- β -Pic₂)⁺ ClO₄⁻ (Pic = picoline)§¶ whereas no substitution occurred when the starting material was the metalloporphyrin ZnTPP. The net yield of the reaction was 61%.

This possibility of forming β -substituted porphyrins by direct electrochemical oxidation of the free base H₂TPP in the presence of the appropriate nucleophiles presents major advantages. It eliminates the metallation step of the free base (necessary when the chemical route is taken), it generates the β -substituted porphyrin with a better yield than that observed when the starting material is the metalloporphyrin, and it allows some β -substitution reactions which do not take place with the metalloporphyrin, as documented above with 2-picoline, and the yield of the reaction is good (61%).

Received, 8th December 1988; Com. 8/04854A

References

- 1 A. G. Padilla, S. M. Wu, and H. J. Shine, J. Chem. Soc., Chem. Commun., 1976, 236.
- 2 H. J. Shine, A. G. Padilla, and S. M. Wu, J. Org. Chem., 1979, 23, 4069.
- 3 A. Giraudeau, H. J. Callot, and M. Gross, *Inorg. Chem.*, 1979, 18, 18.
- 4 D. Lexa and M. Reix, J. Chim. Physique, 1974, 71, 511.
- 5 A. Wolberg and J. Manassen, J. Am. Chem. Soc., 1970, 92, 2982.
- 6 A. Stanienda, Z. Phys. Chem., 1964, 229, 259.
- 7 K. M. Kadish and M. M. Morrison, Bioelectrochem., Bioenerg., 1976, 3, 480.
- 8 L. El Kahef, M. El Meray, M. Gross, and A. Giraudeau, J. Chem. Soc., Chem. Commun., 1986, 621.
- 9 L. El Kahef and A. Giraudeau, submitted for publication.
- 10 A. D. Adler, F. R. Longo, J. D. Pinarelli, J. Goldmacher, J. Assour, and L. Korsakoff, J. Org. Chem., 1967, 32, 476.
- 11 G. H. Barnett, M. F. Hudson, and K. M. Smith, Tetrahedron Lett., 1973, 2887.
- 12 A. Giraudeau, H. J. Callot, J. Jordan, I. Ezahr, and M. Gross, J. Am. Chem. Soc., 1979, 101, 3857.

[‡] ¹H N.m.r. $(CD_3)_2C=O$, δ9.53 (d, 2 H, J 5 Hz, pyridinium H) 9.39 (s, 1 H, β-H adjacent to pyridinium⁺), 9.07 (s, 2 H, β-H), 8.98 (d, 1 H, J 5 Hz, pyridinium H), 8.83–8.77 (m, 4 H, β-H), 8.33–8.09 (m, 10 H, 8 *o*-H and pyridinium H), 7.90–7.83 (m, 9 H, *m*- and *p*-H of phenyl), 7.58–7.49 (m, 3 H, *m*- and *p*-H of phenyl nearest pyridinium).

 $^{^{+}}$ λ_{max} (CH₂Cl₂) (10⁻⁴ ε) 658 (0.93), 600 (0.45), 564 (0.39), 526 (1.52), 426 (24.9) nm.

 $[\]lambda_{max}$ (CH₂Cl₂) (10⁻⁴ ϵ) 656 (0.65), 600 (0.35), 564 (0.33), 527 (1.21), 426 (19.8) nm.

^{¶ &}lt;sup>1</sup>H N.m.r. (CD₃)₂C=O, δ 9.49 (d, 1 H, J 5 Hz, picolinium H), 9.32 (s, 1 H, β -H adjacent to picolinium), 9.08 (s, 2 H, β -H), 8.96 (d, 1 H, J 5 Hz, picolinium H), 8.83–8.77 (m, 2 H, β -H), 8.70–8.63 (m, 2 H, β -H), 8.35–8.00 (m, 10 H, 8 *o*-H and picolinium H), 7.90–7.85 (m, 9 H, *m*- and *p*-H of phenyl), 7.59–7.48 (m, 3 H, *m*- and *p*-H of phenyl nearest picolinium) 2.76 (s, 3 H, methyl H).